Investigation of $\rm Eu^{3+}$ Site Occupancy in Cubic $\rm Y_2O_3$ and $\rm Lu_2O_3$ Nanocrystals

Giorgio Concas, Giorgio Spano, Marco Bettinelli^a, and Adolfo Speghini^a

Dipartimento di Fisica, Università di Cagliari and Istituto Nazionale per la Fisica della Materia, S. P. Monserrato-Sestu km 0.700, I-09042 Monserrato (Cagliari), Italy
^a Dipartimento Scientifico e Tecnologico, Università di Verona and INSTM, UdR Verona, Ca' Vignal, Strada le Grazie 15, I-37134 Verona, Italy

Reprint requests to Dr. G.C.; Fax: +39070510171; E-mail: giorgio.concas@dsf.unica.it

Z. Naturforsch. **58a**, 551 – 557 (2003); received July 24, 2003

The distribution of luminescent Eu^{3+} ions in crystals with the cubic bixbyite-type structure is subject of debate. In this work, the actual occupancy of the two cation sites available for europium in yttria and lutetia nanocrystals with sizes of 10-20 nm has been evaluated by means of ^{151}Eu Mössbauer spectroscopy. The spectral contribution of the ion at different crystalline sites has been resolved, allowing for the quadrupole splitting. The spectra of the nanocrystalline $Y_{1.8}Eu_{0.2}O_3$ and $Lu_{1.8}Eu_{0.2}O_3$ compounds have been analyzed in detail; the C_{3i} and C_2 sites are occupied by the europium ion in a statistical way. The hyperfine parameters have been discussed in terms of symmetry and bonding. An increase of the covalence of the Eu-O bond has been found in the series of compounds Gd_2O_3 , Eu_2O_3 , Y_2O_3 and Lu_2O_3 .

Key words: Europium; Oxides; Nanocrystals; Mössbauer Spectroscopy; Structural Properties.